Branching influences force-velocity curves and length fluctuations in actin networks.

نویسندگان

  • Deepak Kumar Hansda
  • Shamik Sen
  • Ranjith Padinhateeri
چکیده

We investigate collective dynamics of branched actin networks growing against a rigid movable wall constrained by a resistive force. Computing the force velocity relations, we show that the stall force of such networks depends not only on the average number of filaments touching the wall, but also on the amount of fluctuation of the leading edge of the network. These differences arise due to differences in the network architecture, namely, distance between two adjacent branching points and the initial distance of the starting filament from the wall, with their relative magnitudes influencing the nature of the force velocity curves (convex versus concave). We also show that the introduction of branching results in nonmonotonic diffusion constant, a quantity that measures the growth in length fluctuation of the leading edge of the network, as a function of externally applied force. Together our results demonstrate how the collective dynamics of a branched network differs from that of a parallel filament network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Branching actin network remodeling governs the force-velocity relationship

Actin networks, acting as an engine pushing against an external load, are fundamentally important to cell motility. A measure of the effectiveness of an engine is the velocity the engine is able to produce at a given force, the force-velocity curve. One type of force-velocity curve, consisting of a concave region where velocity is insensitive to increasing force followed by a decrease in veloci...

متن کامل

Mechanical properties of branched actin filaments.

Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leadi...

متن کامل

Two competing orientation patterns explain experimentally observed anomalies in growing actin networks.

The lamellipodium of migrating animal cells protrudes by directed polymerization of a branched actin network. The underlying mechanisms of filament growth, branching, and capping can be studied in in vitro assays. However, conflicting results have been reported for the force-velocity relation of such actin networks, namely both convex and concave shapes as well as history dependencies. Here we ...

متن کامل

Growth velocities of branched actin networks.

The growth of an actin network against an obstacle that stimulates branching locally is studied using several variants of a kinetic rate model based on the orientation-dependent number density of filaments. The model emphasizes the effects of branching and capping on the density of free filament ends. The variants differ in their treatment of side versus end branching and dimensionality, and as...

متن کامل

Simulation of cell motility that reproduces the force-velocity relationship.

Many cells crawl by extending an actin-rich pseudopod. We have devised a simulation that describes how the polymerization kinetics of a branched actin filament network, coupled with excluded volume effects, powers the motility of crawling cells such as amoebae and fish keratocytes. Our stochastic simulation is based on the key fundamental properties of actin polymerization, namely growth, shrin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 90 6  شماره 

صفحات  -

تاریخ انتشار 2014